A Generalized Feynman-Kac Formula For One Dimensional Processes
نویسندگان
چکیده
Suppose that a real valued process X is given as a solution to a stochastic differential equation. Then, for any twice continuously differentiable function f , the Feynman-Kac formula gives a condition for f(t,X) to be a local martingale. We generalize the Feynman-Kac formula in two main ways. First, it is extended to nondifferentiable functions. Second, the process X is not required to satisfy an SDE. Instead, it is only required to be a quasimartingale satisfying an integrability condition, and the martingale condition for f(t,X) is then expressed in terms of the marginal distributions, drift measure and jumps of X . The proof involves the stochastic calculus of Dirichlet processes and a time-reversal argument. These results are then applied to show that a continuous and strong Markov martingale is uniquely determined by its marginal distributions.
منابع مشابه
Feynman-Kac formula for stochastic hybrid systems.
We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the...
متن کاملApplication of semi-analytic method to compute the moments for solution of logistic model
The population growth, is increase in the number of individuals in population and it depends on some random environment effects. There are several different mathematical models for population growth. These models are suitable tool to predict future population growth. One of these models is logistic model. In this paper, by using Feynman-Kac formula, the Adomian decomposition method is applied to ...
متن کاملWiener Integration for Quantum Systems: A Unified Approach to the Feynman-Kac formula
A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...
متن کاملua nt - p h / 97 03 03 1 v 1 1 8 M ar 1 99 7 Wiener Integration for Quantum Systems : A Unified Approach to the Feynman - Kac formula ∗
A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...
متن کاملFeynman-kac Penalisations of Symmetric Stable Pro- Cesses
In [9], [10], B. Roynette, P. Vallois and M. Yor have studied limit theorems for Wiener processes normalized by some weight processes. In [16], K. Yano, Y. Yano and M. Yor studied the limit theorems for the one-dimensional symmetric stable process normalized by non-negative functions of the local times or by negative (killing) Feynman-Kac functionals. They call the limit theorems for Markov pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009